top of page


Our lab's research objective is to develop innovative and robust methods to measure tissue parameters with magnetic resonance imaging (MRI), and then apply these approaches to learn more about disease or healthy development. A key component for this research is the development of advanced diffusion MRI methods, which provide exquisite sensitivity to cellular microstructural environment. This type of virtual microscopy of the brain allows characterization of in vivo tissue changes that occur in disorders or normal development/learning, which can help us to understand the brain’s complex inner workings, providing insight for the development of interventions or diagnostic tools.


Recent Research

Screenshot 2023-10-05 112837.png

Tensor-valued and frequency-dependent diffusion MRI and magnetization transfer saturation MRI evolution during adult mouse brain maturation {arXiv}
N. Rahman*, J. Hamilton*, K. Xu, A. Brown, C. A. Baron 
* co-first author

Screenshot 2023-09-07 110940.png

Robust frequency-dependent diffusion kurtosis computation using an efficient direction scheme, axisymmetric modelling, and spatial regularization {arXiv}
J. Hamilton, K. Xu, A. Brown, C. A. Baron


Microscopic fractional anisotropy asymmetry in unilateral temporal lobe epilepsy {medRxiv}
Nico J. J. Arezza, Hana Abbas, Caroline Chadwick, Ingrid S. Johnsrude, Jorge Burneo, Ali R. Khan, Corey A. Baron


A longitudinal microstructural MRI dataset in healthy C57Bl/6 mice at 9.4 Tesla {Scientific Data}
ila Rahman, Kathy Xu, Matthew D. Budde, Arthur Brown, Corey A. Baron


A correction algorithm for improved magnetic field monitoring with distal field probes {arXiv} {MRM}
Paul I. Dubovan, Kyle M. Gilbert, Corey A. Baron


High-resolution single-shot spiral diffusion-weighted imaging at 7T using expanded encoding with compressed sensing {arXiv} {MRM}
Gabriel Varella-Mattatall, Paul I. Dubovan, Tales Santini, Kyle M. Gilbert, Ravi S. Menon, Corey A. Baron


Estimation of free water-corrected microscopic fractional anisotropy {medRxiv} {FrontNeuro}
Nico J. J. Arezza, Mohammad Omer, Corey A. Baron


Model-based determination of the synchronization delay between
MRI and trajectory data 
{arXiv} {MRM}

Paul I. Dubovan, Corey A. Baron


Test-retest reproducibility of in vivo magnetization transfer ratio and saturation index in mice at 9.4 Tesla {bioRxiv} {JMRI}
Naila Rahman, Jordan Ramnarine, Kathy Xu, Arthur Brown, Corey A. Baron


Enabling complex fibre geometries using 3D printed axon-mimetic phantoms {bioRxiv} {Front. Neuro}
Tristan K. Kuehn, Farah N. Mushtaha, Ali R. Khan, Corey A. Baron

Screen Shot 2021-10-27 at 9.58.10 AM.png

Frequency tuned bipolar oscillating gradients for mapping diffusion kurtosis dispersion in the human brain. {arXiv} {MRM}
Kevin B. Borsos, Desmond H.Y. Tse, Paul I. Dubovan, Corey A. Baron


Integration of a radiofrequency coil and commercial field camera for ultra-high-field MRI. {BioRXiv} {MRM} {MRM Highlights}
Kyle M. Gilbert, Paul Dubovan, Joseph S. Gati, Ravi S. Menon, Corey A. Baron

Naila's paper figure.PNG

Test-retest reproducibility of in vivo oscillating gradient and microscopic anisotropy diffusion MRI in mice at 9.4 Tesla. {BioRXiv} {PLOS ONE}
Naila Rahman, Kathy Xu, Mohammad Omer, Matthew Budde, Arthur Brown, Corey Baron

Jakes's paper figure

Characterization and correction of time-varying eddy currents for diffusion MRI. {Arxiv} {MRM}
Jake J. Valsamis, Paul I. Dubovan, Corey A. Baron


bottom of page