top of page

ABOUT US

Our lab's research objective is to develop innovative and robust methods to measure tissue parameters with magnetic resonance imaging (MRI), and then apply these approaches to learn more about disease or healthy development. A key component for this research is the development of advanced diffusion MRI methods, which provide exquisite sensitivity to cellular microstructural environment. This type of virtual microscopy of the brain allows characterization of in vivo tissue changes that occur in disorders or normal development/learning, which can help us to understand the brain’s complex inner workings, providing insight for the development of interventions or diagnostic tools.

tractography_eg.png

Recent Research

Screenshot 2023-10-05 112837.png

Tensor-valued and frequency-dependent diffusion MRI and magnetization transfer saturation MRI evolution during adult mouse brain maturation {arXiv}
N. Rahman*, J. Hamilton*, K. Xu, A. Brown, C. A. Baron 
* co-first author

Screenshot 2023-09-07 110940.png

Robust frequency-dependent diffusion kurtosis computation using an efficient direction scheme, axisymmetric modelling, and spatial regularization {arXiv} {Imaging Neuroscience}
J. Hamilton, K. Xu, A. Brown, C. A. Baron

nico_epilepsy.png

Microscopic fractional anisotropy asymmetry in unilateral temporal lobe epilepsy {medRxiv}
Nico J. J. Arezza, Hana Abbas, Caroline Chadwick, Ingrid S. Johnsrude, Jorge Burneo, Ali R. Khan, Corey A. Baron

Rahman_sciData.png

A longitudinal microstructural MRI dataset in healthy C57Bl/6 mice at 9.4 Tesla {Scientific Data}
Na
ila Rahman, Kathy Xu, Matthew D. Budde, Arthur Brown, Corey A. Baron

Screenshot_20230202_084101.png

A correction algorithm for improved magnetic field monitoring with distal field probes {arXiv} {MRM}
Paul I. Dubovan, Kyle M. Gilbert, Corey A. Baron

Screenshot_20230124_095620.png

High-resolution single-shot spiral diffusion-weighted imaging at 7T using expanded encoding with compressed sensing {arXiv} {MRM}
Gabriel Varella-Mattatall, Paul I. Dubovan, Tales Santini, Kyle M. Gilbert, Ravi S. Menon, Corey A. Baron

Screenshot_20230124_100811.png

Estimation of free water-corrected microscopic fractional anisotropy {medRxiv} {FrontNeuro}
Nico J. J. Arezza, Mohammad Omer, Corey A. Baron

Screenshot_20230124_101833.png

Model-based determination of the synchronization delay between
MRI and trajectory data 
{arXiv} {MRM}

Paul I. Dubovan, Corey A. Baron

Screenshot_20230124_102535.png

Test-retest reproducibility of in vivo magnetization transfer ratio and saturation index in mice at 9.4 Tesla {bioRxiv} {JMRI}
Naila Rahman, Jordan Ramnarine, Kathy Xu, Arthur Brown, Corey A. Baron

Screenshot_20230124_103007.png

Enabling complex fibre geometries using 3D printed axon-mimetic phantoms {bioRxiv} {Front. Neuro}
Tristan K. Kuehn, Farah N. Mushtaha, Ali R. Khan, Corey A. Baron

Screen Shot 2021-10-27 at 9.58.10 AM.png

Frequency tuned bipolar oscillating gradients for mapping diffusion kurtosis dispersion in the human brain. {arXiv} {MRM}
Kevin B. Borsos, Desmond H.Y. Tse, Paul I. Dubovan, Corey A. Baron

F1.large.jpg

Integration of a radiofrequency coil and commercial field camera for ultra-high-field MRI. {BioRXiv} {MRM} {MRM Highlights}
Kyle M. Gilbert, Paul Dubovan, Joseph S. Gati, Ravi S. Menon, Corey A. Baron

Naila's paper figure.PNG

Test-retest reproducibility of in vivo oscillating gradient and microscopic anisotropy diffusion MRI in mice at 9.4 Tesla. {BioRXiv} {PLOS ONE}
Naila Rahman, Kathy Xu, Mohammad Omer, Matthew Budde, Arthur Brown, Corey Baron

Jakes's paper figure

Characterization and correction of time-varying eddy currents for diffusion MRI. {Arxiv} {MRM}
Jake J. Valsamis, Paul I. Dubovan, Corey A. Baron

FUNDING

brainsCAN.png
NSERC.jpg
CFMM.jpg
bottom of page